3.6.74 \(\int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\) [574]

3.6.74.1 Optimal result
3.6.74.2 Mathematica [A] (verified)
3.6.74.3 Rubi [A] (verified)
3.6.74.4 Maple [B] (verified)
3.6.74.5 Fricas [F]
3.6.74.6 Sympy [F]
3.6.74.7 Maxima [F]
3.6.74.8 Giac [F]
3.6.74.9 Mupad [F(-1)]

3.6.74.1 Optimal result

Integrand size = 21, antiderivative size = 304 \[ \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=-\frac {8 a \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b (a+b)^{3/2} d}+\frac {2 (3 a-b) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{3 (a-b) b (a+b)^{3/2} d}-\frac {2 b \tan (c+d x)}{3 \left (a^2-b^2\right ) d (a+b \sec (c+d x))^{3/2}}-\frac {8 a b \tan (c+d x)}{3 \left (a^2-b^2\right )^2 d \sqrt {a+b \sec (c+d x)}} \]

output
-8/3*a*cot(d*x+c)*EllipticE((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b)/(a-b 
))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/( 
a-b)/b/(a+b)^(3/2)/d+2/3*(3*a-b)*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/ 
2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+ 
sec(d*x+c))/(a-b))^(1/2)/(a-b)/b/(a+b)^(3/2)/d-2/3*b*tan(d*x+c)/(a^2-b^2)/ 
d/(a+b*sec(d*x+c))^(3/2)-8/3*a*b*tan(d*x+c)/(a^2-b^2)^2/d/(a+b*sec(d*x+c)) 
^(1/2)
 
3.6.74.2 Mathematica [A] (verified)

Time = 5.97 (sec) , antiderivative size = 360, normalized size of antiderivative = 1.18 \[ \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=-\frac {2 (b+a \cos (c+d x)) \sec ^3(c+d x) \left (b^2 \left (-a^2+b^2\right ) \sin (c+d x)-b \left (-5 a^2+b^2\right ) (b+a \cos (c+d x)) \sin (c+d x)-4 a^2 (b+a \cos (c+d x))^2 \sin (c+d x)+2 a \cos ^2\left (\frac {1}{2} (c+d x)\right ) (b+a \cos (c+d x)) \left (4 a (a+b) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {a-b}{a+b}\right )-\left (3 a^2+4 a b+b^2\right ) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {b+a \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {a-b}{a+b}\right )+2 a \cos (c+d x) (b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )\right )}{3 a \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))^{5/2}} \]

input
Integrate[Sec[c + d*x]/(a + b*Sec[c + d*x])^(5/2),x]
 
output
(-2*(b + a*Cos[c + d*x])*Sec[c + d*x]^3*(b^2*(-a^2 + b^2)*Sin[c + d*x] - b 
*(-5*a^2 + b^2)*(b + a*Cos[c + d*x])*Sin[c + d*x] - 4*a^2*(b + a*Cos[c + d 
*x])^2*Sin[c + d*x] + 2*a*Cos[(c + d*x)/2]^2*(b + a*Cos[c + d*x])*(4*a*(a 
+ b)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + 
 b)*(1 + Cos[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + 
b)] - (3*a^2 + 4*a*b + b^2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b 
+ a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + 
d*x)/2]], (a - b)/(a + b)] + 2*a*Cos[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c 
+ d*x)/2]^2*Tan[(c + d*x)/2])))/(3*a*(a^2 - b^2)^2*d*(a + b*Sec[c + d*x])^ 
(5/2))
 
3.6.74.3 Rubi [A] (verified)

Time = 1.10 (sec) , antiderivative size = 323, normalized size of antiderivative = 1.06, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.524, Rules used = {3042, 4320, 27, 3042, 4491, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4320

\(\displaystyle -\frac {2 \int -\frac {\sec (c+d x) (3 a-b \sec (c+d x))}{2 (a+b \sec (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec (c+d x) (3 a-b \sec (c+d x))}{(a+b \sec (c+d x))^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 a-b \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4491

\(\displaystyle \frac {-\frac {2 \int -\frac {\sec (c+d x) \left (3 a^2+4 b \sec (c+d x) a+b^2\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {8 a b \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\sec (c+d x) \left (3 a^2+4 b \sec (c+d x) a+b^2\right )}{\sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {8 a b \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (3 a^2+4 b \csc \left (c+d x+\frac {\pi }{2}\right ) a+b^2\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {8 a b \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {\frac {(a-b) (3 a-b) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx+4 a b \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx}{a^2-b^2}-\frac {8 a b \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(a-b) (3 a-b) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+4 a b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {8 a b \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {\frac {4 a b \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{a^2-b^2}-\frac {8 a b \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {\frac {\frac {2 (a-b) (3 a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}-\frac {8 a (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b d}}{a^2-b^2}-\frac {8 a b \tan (c+d x)}{d \left (a^2-b^2\right ) \sqrt {a+b \sec (c+d x)}}}{3 \left (a^2-b^2\right )}-\frac {2 b \tan (c+d x)}{3 d \left (a^2-b^2\right ) (a+b \sec (c+d x))^{3/2}}\)

input
Int[Sec[c + d*x]/(a + b*Sec[c + d*x])^(5/2),x]
 
output
(-2*b*Tan[c + d*x])/(3*(a^2 - b^2)*d*(a + b*Sec[c + d*x])^(3/2)) + (((-8*a 
*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Sec[c + d*x] 
]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt 
[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b*d) + (2*(a - b)*(3*a - b)*Sqrt[a + 
 b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], ( 
a + b)/(a - b)]*Sqrt[(b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c 
+ d*x]))/(a - b))])/(b*d))/(a^2 - b^2) - (8*a*b*Tan[c + d*x])/((a^2 - b^2) 
*d*Sqrt[a + b*Sec[c + d*x]]))/(3*(a^2 - b^2))
 

3.6.74.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4320
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_ 
Symbol] :> Simp[(-b)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b* 
Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ 
[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
 

rule 4491
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(cs 
c[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e 
 + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1 
/((m + 1)*(a^2 - b^2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp 
[(a*A - b*B)*(m + 1) - (A*b - a*B)*(m + 2)*Csc[e + f*x], x], x], x] /; Free 
Q[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m 
, -1]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 
3.6.74.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2258\) vs. \(2(274)=548\).

Time = 6.04 (sec) , antiderivative size = 2259, normalized size of antiderivative = 7.43

method result size
default \(\text {Expression too large to display}\) \(2259\)

input
int(sec(d*x+c)/(a+b*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
2/3/d/(a-b)^2/(a+b)^2*(-4*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a* 
cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/( 
a+b))^(1/2))*a^2*b*cos(d*x+c)^3-(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b) 
*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(( 
a-b)/(a+b))^(1/2))*a*b^2*cos(d*x+c)^3+4*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)* 
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d 
*x+c),((a-b)/(a+b))^(1/2))*a^2*b*cos(d*x+c)^3-6*(cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+ 
c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2+b^3*cos(d*x+c)*sin(d*x 
+c)+4*a^3*cos(d*x+c)^2*sin(d*x+c)+4*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/( 
a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c 
),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^3-3*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(cot(d*x+c)-csc 
(d*x+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^3+4*EllipticE(cot(d*x+c)-csc(d 
*x+c),((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2) 
*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*a^2*b+4*EllipticE(cot(d*x+c)-csc(d*x+c) 
,((a-b)/(a+b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(cos 
(d*x+c)/(cos(d*x+c)+1))^(1/2)*a*b^2+8*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c 
)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x 
+c),((a-b)/(a+b))^(1/2))*a^3*cos(d*x+c)^2-3*EllipticF(cot(d*x+c)-csc(d*...
 
3.6.74.5 Fricas [F]

\[ \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
integral(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)/(b^3*sec(d*x + c)^3 + 3*a*b 
^2*sec(d*x + c)^2 + 3*a^2*b*sec(d*x + c) + a^3), x)
 
3.6.74.6 Sympy [F]

\[ \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {\sec {\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{\frac {5}{2}}}\, dx \]

input
integrate(sec(d*x+c)/(a+b*sec(d*x+c))**(5/2),x)
 
output
Integral(sec(c + d*x)/(a + b*sec(c + d*x))**(5/2), x)
 
3.6.74.7 Maxima [F]

\[ \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)/(b*sec(d*x + c) + a)^(5/2), x)
 
3.6.74.8 Giac [F]

\[ \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )}{{\left (b \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)/(a+b*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)/(b*sec(d*x + c) + a)^(5/2), x)
 
3.6.74.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (c+d x)}{(a+b \sec (c+d x))^{5/2}} \, dx=\int \frac {1}{\cos \left (c+d\,x\right )\,{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int(1/(cos(c + d*x)*(a + b/cos(c + d*x))^(5/2)),x)
 
output
int(1/(cos(c + d*x)*(a + b/cos(c + d*x))^(5/2)), x)